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Abstract. The Bak–Sneppen model is shown to fall into a different universality class with
the introduction of a preferred direction, mirroring the situation in spin systems. This is first
demonstrated by numerical simulations and subsequently confirmed by analysis of the multitrait
version of the model, which admits exact solutions in the extremes of zero and maximal
anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the
avalanche has a power law ‘tail’ which passes through the system for any non-zero anisotropy
but remains fixed for the isotropic case, thus explaining the crossover in behaviour. Finally,
we identify the maximally anisotropic model which is more tractable and yet more generally
applicable than the isotropic system.

1. Introduction

The Bak–Sneppen model was originally introduced as a crude caricature of biological
macroevolution in an attempt to explain the distribution of extinction sizes observed in
the fossil record [1–3]. Although still widely studied in this context, there is also a great
deal of interest in analysing the model from a purely abstract viewpoint. This is because
it is currently the simplest and most tractable of the class ofextremal dynamicalmodels,
which themselves form a subset of self-organized critical systems [2, 4, 5]. Extremal
dynamical models are so called because they are driven by the the selection of some
globally extremal value which dynamically interacts with nearby sites. They naturally
evolve towards a ‘critical state’ (a second-order phase transition) without any characteristic
length or timescales.

It might appear that the Bak–Sneppen model is well suited to adopt the role of the ‘Ising
model’ of extremal dynamical systems. We believe that this is not the case, and in this
paper we detail an even simpler version of the model which is more open to analysis whilst
retaining all the essential behaviour of the original. The inspiration behind this new model
can be most clearly described by analogy with spin systems [6]. The Heisenberg spin model
is isotropic because the spin vectors have no preferred direction. However, when even the
slightest anisotropy is introduced, a preferred direction is created and the system falls into
a different universality class. Furthermore, this is the same class as the highly anisotropic
Ising model, where the spin vectors can only lie parallel to the direction of quantization.
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So not only is the Ising model in some sense more general than the Heisenberg model, it
is also simpler and hence more tractable.

The original incarnation of the Bak–Sneppen model is like the Heisenberg model in that
it too is isotropic. If the analogy with spin systems is to hold true, then the introduction of
anisotropy into the Bak–Sneppen model should result in a different universality class. We
find that this is indeed the case, at least for one-dimensional systems, and conclude that,
unless there is some reason for assuming perfect isotropy, it is the anisotropic model that
should be treated as the general case and the isotropic version as a special limiting instance.
It is also possible to identify amaximally anisotropicBak–Sneppen model which may serve
as the true analogue of the Ising model for extremal dynamical systems. We postpone until
section 5 the question of whether isotropy should be assumed in any known application of
the model.

This paper is organized as follows. Numerical simulations of anisotropic systems are
described in section 2 and the exponents for the new universality class are given. By
switching to the multitrait model, a full solution of the maximally anisotropic system is
found which explicitly demonstrates the crossover to the new class. This solution is derived
in section 3 alongside the known result for the isotropic model. An exact solution for
intermediate anisotropies was not forthcoming, but by employing an alternative means of
analysis it is possible to show that this new class also applies to any non-zero anisotropy.
This is presented in section 4. Finally, in section 5 we discuss the applicability of this new
class in real situations, and consider the potential of the maximally anisotropic model in
future analytical treatments.

2. The anisotropic model

Before considering anisotropy we briefly summarize the isotropic model and some of its
known results [1, 2].N scalarsfi , where i = 1 . . . N , are placed on a one-dimensional
lattice with periodic boundary conditions. Thefi , known as ‘barriers’, are random numbers
uniformly distributed on [0, 1], although the system behaves in essentially the same manner
regardless of the particular choice of distribution. At each timestep the global minimum of
all thefi is found, and it and its two nearest neighbours are given new random values from
the same distribution as before. This process is then repeatedad infinitum.

Despite such minimalist dynamics the model exhibits a rich variety of non-trivial
behaviour. It evolves towards a statistical steady state in which the bulk of thefi are
uniformly distributed on [fc, 1], where the threshold valuefc is a function of the lattice
dimension and connectivity. For the one-dimensional lattice considered here,fc ≈ 0.667.
A finite number of barriers form a tail on [0, fc] and it is in this tail that the global minimum
is always found. Both the spatial and temporal correlation functions are power law in form,
signifying the existence of a critical state with no characteristic length or timescales. The
distribution for the absolute distance between successive minima1x is

PJUMP(1x) ∼ (1x)−π (1)

whereπ = 3.23± 0.02. The probability that the minimum is at the same site at timest0
and t + t0 is given by

PALL (t) ∼ t−τALL (2)

with τALL = 0.42± 0.02. This holds true as long ast � t0 and ageing effects can be
ignored [7, 8].
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Figure 1. A log–log plot ofPALL (t), the probability for the active site to return to its original
position after a timet . The upper line is from the standard isotropic model and the lower line is
from an anisotropic system in which the barriersfi−1, fi andfi+3 are reset at every timestep,
wherefi is the current global minimum. The broken lines have slopes of−0.42 and−0.59,
respectively. The data for the anisotropic system has been moved upwards to allow for direct
comparison with the isotropic case. The simulations were performed on anN = 104 lattice, for
5× 103N iterations in the isotropic case and 5× 104N in the anisotropic case.

The model defined above is isotropic because the interaction between the global
minimum and the other barriers is the same in both directions. In other words, if the
current minimum isfi then barriersfi−1, fi andfi+1 are reset, so the minimum is just as
likely to jump to the left as it is to the right. Consider what happens when the rules are
altered so thatfi−1, fi andfi+2 are reset instead. The system now has an inherent bias to
the right and we would expect an avalanche to be more likely to propagate in that direction.
This constitutes ananisotropic model since there now exists a preferred direction for the
global minimum to drift.

We have performed extensive numerical simulations of the anisotropic model and
have observed that the system behaves in qualitatively the same manner as the isotropic
model. However, the correlation distributionsPJUMP andPALL have different exponents,
π↑ = 2.42± 0.05 andτ↑ALL = 0.59± 0.03, so the system falls into a different universality
class to the isotropic case. Plots ofPALL for both classes are given in figure 1 for direct
comparison.PJUMP is uniformly lower for jumps against the direction of anisotropy as for
jumps with it, but the same exponent applies in both directions. The threshold valuefc
also drops, but this is simply due to the increased spreading out of the avalanche and has
nothing to do with the loss of isotropy.

The new universality class is not just restricted to this one example. Simulations have
shown that if barriersfi−a, fi and fi+b are reset, wherea and b are arbitrary positive
integers, then the same class holds forany a 6= b. The dynamics can be further generalized
by considering ranges of sites on each side of the minimum, and either selecting all of these
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sites or just a random sample. Here, anisotropy corresponds to a larger range on one side
than on the other. In all cases the same exponents are found for any non-zero anisotropy,
although convergence can be very slow when the anisotropy is weak, a point that will be
explicitly demonstrated for the multitrait model in section 4.

3. The multitrait model

The consequences of introducing anisotropy into the Bak–Sneppen model can be fully
investigated by switching to the multitrait framework [9]. In the multitrait model each site
hasM internal degrees of freedom, that isM different barriers rather than just the usual 1.
At each timestep the smallest of all theN ×M barriers in the system is found and reset.
One of theM barriers from each of its neighbouring sites is selected at random and also
reset, so three barriers are reset in total. Then the new global minimum is found and the
process is iterated indefinitely. For finiteM the system belongs to the same universality
class as the standardM = 1 model, but forM → ∞ it falls into a different class and,
furthermore, can be solved exactly. To see why this is so, we must first define what is
meant by aλ-avalanche.

For any given value ofλ < fc the global minimum can be either greater or less thanλ.
Hence a time series of the minimum will consist of regions where it is less thanλ alternating
with regions where it is greater thanλ. Each block for which the global minimum is less
than λ is defined as aλ-avalanche. During aλ-avalanche any barrier smaller thanλ is
called active since the avalanche cannot finish until all of the active barriers have been
made inactive, that is when they have all been reset to values greater thanλ. There are only
two ways in which a barrier can become reset, it either becomes the global minimum or
belongs to an adjacent site to the minimum and is selected with probability 1/M. However,
the latter possibility cannot occur in theM →∞ limit since there are only a finite number
of active barriers in the system at any one time, so the probability of selecting one at
random is vanishingly small. Hence, each active barrier must eventually become the global
minimum and it will then initiate a subavalanche that can change inactive barriers to active,
but never the other way around. Furthermore, since the subavalanches from different active
barriers propagate independently of each other, the active barriers can be reset in any order
and there is no longer any need to keep track of what is actually the global minimum.

The temporal correlations forM →∞ are the same as for a mean-field model in which
the neighbours of the minimum are chosen at random, so the introduction of anisotropy will
make no difference. Rather than repeat the analysis here, we simply quote the main result
and refer the reader to [9] for details of the derivation. IfPλ(t) is the probability that a
λ-avalanche lasts for exactly timet , then

Pλ(t) ∼ t−3/2G(t(λ− 1
2)

2) (3)

asλ→ fc = 1
2, whereG(x) is a scaling function that tends to a constant value forx → 0.

As expected,Pλ has the usual mean-field exponent of3
2. Since (3) holds independently of

the spatial structure of the system, we can already conclude that the threshold barrier value
fc will be 1

2 regardless of the degree of anisotropy.
Anisotropy will clearly effect the spatial correlations and so we present the following

analysis in some detail, starting with the isotropic model. As in the derivation of (3) the
algebra is simplified by stipulating that the active barrier always takes the value of 1 when
it is reset. This makes no qualitative difference to the results. Hence the central barrier
is always made inactive, but the barriers reset in each of the adjacent sites may become
active with probabilityλ. Let gr denote the probability that resetting an active barrier at
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the origin causes at least one of the barriers in siter to become active. Then 1− gr is the
probability that no barriers become active, which can be related to 1− gr−1 and 1− gr+1

by the difference equation

1− gr = (1− λ)2+ λ2(1− gr−1)(1− gr+1)+ λ(1− λ){(1− gr−1)+ (1− gr+1)}. (4)

This can be derived by considering what happens when an active barrier at the origin is reset.
The probability of creating no new active barriers is(1− λ)2, in which case the avalanche
will end and siter will definitely not become active. This is catered for by the first term on
the right-hand side of (4). Similarly, the second and third terms account for the creation of
active barriers in one or both of the adjacent sites, which may subsequently propagate to site
r with probabilitiesgr−1 andgr+1, assuminggr to be translationally invariant. Equation (4)
can be rearranged to give

gr = λ(gr−1+ gr+1)− λ2gr−1gr+1. (5)

If the wholeλ-avalanche starts from a single active barrier atr = 0, theng0 = 1 and (5)
can be solved to give

gr = 12

(r + 3)(r + 4)
(6)

for λ = 1
2, explicitly demonstrating the asymptotic power law behaviourgr ∼ 1/r2.

There are many ways in which anisotropy could be incorporated into this framework,
but for clarity we restrict our attention to just a single definition. At every timestep the
global minimum barrier is found, say in sitei, and reset. The anisotropic interaction consists
of randomly selecting one of theM barriers in each of the sitesi−a andi+b and resetting
them both, where the parametersa andb are positive integers. Some examples are given in
figure 2. Note that ifa andb share a common factor, sayc, then the system will trivially
decouple intoc independent sublattices. For instance, ifa = b = 2 then all the even-
numbered sites will decouple from all the odd-numbered sites and the two sublattices will
evolve independently of each other. Thus we can safely assume thata andb are coprime.
As a corollary any system witha = b is equivalent to the standard modela = b = 1.
Similarly, if a is equal to zero we can takeb = 1 without loss of generality, and vice versa
if b = 0.

The maximally anisotropic system witha = 0 andb = 1 can be solved in much the
same way as the isotropic case. Since only two barriers are reset at every timestep anyway
there is no need to set the central barrier to 1 as before. The resulting difference equation
is similar to (4) and can be derived in an entirely analogous manner,

1− gr = (1− λ)2+ λ2(1− gr)(1− gr+1)+ λ(1− λ){(1− gr)+ (1− gr+1)} (7)

which rearranges to

gr = λgr−1

1− λ+ λ2gr−1
. (8)

For λ = 1
2 this admits the exact solution

gr =


2

2+ r for r > 0

0 for r < 0
(9)

so nowgr ∼ 1/r for larger, giving a power law with an exponent of 1.
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Figure 2. Examples of various definitions of anisotropy. In all cases the full square is the site
with the global minimum and the shaded squares are the other sites in which a barrier is also
reset. The shaded sites area places to the left of the site with the minimum, andb places to its
right. (a) The standard modela = b = 1. (b) The maximally anisotropic modela = 0, b = 1.
(c) An intermediate casea = 2, b = 3.

An exact expression forλ 6= 1
2 can also be found by substitutinggr = 1/zr into (8).

This gives a linear difference equation for thezr ,

zr = 1− λ
λ

zr−1+ λ (10)

which can be solved to give

zr = λ2

1− 2λ

{(
1− λ
λ

)r+2

− 1

}
. (11)

For λ < 1
2, zr blows up exponentially inr and sogr will exponentially decay to zero. If

λ > 1
2 then gr will exponentially decay to a constant value for larger, corresponding to

a non-zero probability of initiating an infinite avalanche. However, this latter case is of
academic interest only since the underlying simplification of theM → ∞ limit rests on
there being only a finite number of active barriers at any one time, which is no longer true
whenλ > 1

2.
The exponent forgr is related to the exponent forPJUMP by π = τR+1, wheregr ∼ r−τR

andPJUMP(1x) ∼ (1x)−π . Hence the analysis given above demonstrates thatπ changes
from 3 to 2 with the introduction of anisotropy. This should be compared with the numerical
results in section 2 forM = 1 systems, whereπ went from 3.23± 0.02 to 2.42± 0.05.
In both cases the exponent jumps in the same direction and by a roughly similar amount.
Furthermore, forM →∞ the exponent forPALL (t) ∼ t−τALL obeysτALL = (2τR)

−1. Hence
τALL increases from1

4 to 1
2, and again a similar jump was observed forM = 1, whereτALL

increased from 0.42± 0.02 to 0.59± 0.03. Thus the change in behaviour in theM →∞
limit is also representative of theM = 1 case.
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4. Arbitrary anisotropy

It remains to be seen whether systems with intermediate anisotropies do indeed fall into
the same universality class as the maximally anisotropic model, as implied by the analogy
with the Heisenberg and Ising spin models. Unfortunately, the style of analysis adopted
in the previous section is of little use here since the difference equation (5) admits no
straightforward solutions for arbitrarya andb. The difficulty stems from the fact that the
interactions are now between non-adjacent sites. One way around this problem is to find a
separate lattice representation for the avalanche in which only nearest neighbours interact.
This could then be mapped onto the one-dimensional substrate in such a way that nearest
neighbours on the avalanche lattice map onto interacting sites on the substrate.

To do this unambiguously, it is necessary to employ a two-dimensional lattice(n,m)

which represents the entire spatiotemporal extent of the avalanche. The mapping from sites
(n,m) on the avalanche lattice to sitesr on the one-dimensional substrate is derived as
follows. The origin(0, 0) corresponds tor = 0. Any given site(n,m) can be reached by
taking n steps to the left andm steps to the right, in any order. For arbitrarya andb, the
resulting value ofr is

r = na −mb. (12)

Each value ofr corresponds to the set of points(ni,mi) that obey (12). Successive points
are separated by the constant displacement vector

1nm = (ni+1, mi+1)− (ni,mi) = (ni+1− ni,mi+1−mi) = (b, a). (13)

That 1nm is the smallest displacement vector follows from the coprime nature ofa and
b. The mapping from(n,m) to r can thus be regarded as aprojection from the two-
dimensional avalanche lattice to the one-dimensional substrate. An example is given in
figure 3(a) for the isotropic model. Whena 6= b the (n,m)-lattice becomes rotated relative
to the projection lines, so for instance whena = 0 andb = 1 the lattice lies completely on
its side, as in figure 3(b). An intermediate case is given in figure 3(c).

To quantify this relationship further, letpnm be the probability that site(n,m) is active.
Site r will remain inactive throughout the entire avalanche only if all of its corresponding
(n,m) are also inactive, so

gr = 1−
∏
n,m

(1− pnm) (14)

where the product is taken over all then andm that obey (12). The advantage of this
approach is that varying the anisotropy only effectswhich pnm contribute to (14), thepnm
themselves areentirely unaltered. Thus a unique solution to thepnm exists which, if found,
could be applied to any anisotropy through (14) without modification.

The next step is to find the solution for thepnm. Each site(n,m) hasM barriers which,
if active, may create active barriers in either or both of sites(n+1, m) and(n,m+1). Since
we are still in theM →∞ limit, the subavalanches initiated by different active barriers are
independent and can be arranged so as to form a compact avalanche on the(n,m) lattice.
A site (n,m) can only become active if one of its barriers is reset to a value less thatλ due
to the interaction with an active neighbouring site. The neighbours in question are the two
diagonally lower sites(n−1, m) and(n,m−1), so the probability of either event occurring
independently isλpn−1m andλpnm−1, respectively. Thus the difference equation for thepnm
is

pnm = λ(pn−1m + pnm−1)− λ2pn−1mpnm−1. (15)
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Figure 3. The projection from the(n,m) lattice to sitesr on
the one-dimensional substrate. Adjacent sites on the(n,m)

lattice correspond to sitesr that interact. (a) The isotropic
model a = b = 1. The dotted lines connect all the(n,m)
that correspond to the same value ofr. (b) The maximally
anisotropic casea = 0, b = 1. (c) An intermediate case
a = 2, b = 1.

By dropping the second term on the right-hand side of (15), a linear equation is obtained
which has the exact solution

plin
nm =

(n+m)!
n!m!

λn+m. (16)

Except for a missing normalization factor of 2−(n+m), the coefficients(n + m)!/(n!m!)
describe a binomial distribution with equal probability of either outcome. For largen and
m this binomial is well approximated by a Gaussian distribution with mean(n+m)/2 and
variance(n+m)/4,

plin
nm ≈

√
2

π(n+m) exp

{
−1

2

(n−m)2
n+m

}
(2λ)n+m. (17)

This expression is vanishingly small except for points that lie near the linen = m, which
form a non-vanishing ‘tail’. A cut through points of equaln + m shows that this tail
has a Gaussian cross section of width1

2

√
n+m, so it becomes broader down its length.

The behaviour down the centre of the tail depends upon the value ofλ. For λ 6= 1
2, plin

nn

either blows up or decays exponentially according to the factor of(2λ)2n in (17). At the
critical pointλ = 1

2 this factor becomes unity and instead the tail exhibits power law decay
plin
nn ∼ n−1/2.

Numerical integration of the full difference equation (15) shows that the exact solution
of pnm does indeed have a Gaussian tail of variance(n + m)/4 which decays as a power
law for λ = 1

2, in agreement with the expression forplin
nm. However, the exponent for the

power law decay is different in both cases,pnn ∼ n−1 for the exact solution as opposed



The anisotropic Bak–Sneppen model 3985

to plin
nn ∼ n−1/2. The correct exponent can be recovered by restoring the nonlinear term

in (15) and instead considering the equivalent continuum approximation†. Let x and y
be continuous variables corresponding ton andm, and defineh(x, y) = pnm. Using this
notation,

∇h(x, y) = ∂h(x, y)

∂x
+ ∂h(x, y)

∂y

≈ (pnm − pn−1m)+ (pnm − pnm−1) (18)

and (15) can be rewritten as
1
2∇h = (2λ− 1)h− λ2h2. (19)

This can be simplified by making the substitutionh(x, y) = 1/z(x, y) and the change of
variablesu = x + y andv = x − y, giving

∂z

∂u
= (1− 2λ)z+ λ2. (20)

For λ = 1
2 the first term on the right-hand side of (20) vanishes and straightforward

integration gives

z(u, v) = u

4
+ A(v) (21)

whereA(v) is an arbitrary function ofv that is found from the boundary conditions. There
are two sets of boundary conditions, one for the linem = 0 and another for the linen = 0.
It is clear from (15) thatpn0 = λn exactly. The linem = 0 is the same as the liney = 0,
which maps ontou = v after the change of variables, so the first boundary condition is
z(u, u) = λ−u. Similarly, p0m = λn and the linen = 0 corresponds tou = −v, so the
second-boundary condition isz(u,−u) = λ−u. This allows forA(v) to be fixed and the
full solution is

z(u, v) = u− |v|
4
+ 2|v|. (22)

Along the tailv = 0, z(u, 0) ∼ u and soh(x, x) ∼ x−1, giving the correct exponent for the
decay. However, moving away from the tail results in exponential growth inz(u, v) and
hence exponential decay inh(x, y). Thus the continuum approximation predicts the correct
exponent for the decay of the tail but the wrong cross-sectional shape, that is, exponential
rather than Gaussian.

The solution forλ < 1
2 can be found by following exactly the same procedure. This

results in

z(u, v) = ((1− 2λ)λ−|v| + λ2)e(1−2λ)(u−|v|) − λ2

1− 2λ
. (23)

As before, this expression increases exponentially away from the tail. Forv = 0 it reduces
to

z(u, 0) = (1− λ)2e(1−2λ)u − λ2

1− 2λ
(24)

which blows up exponentially inu. Henceh(x, x) decays to zero whenλ < 1
2, giving an

exponential cut-off in the distribution of avalanche sizes. We note in passing that (23) also

† Note that this is the continuumapproximation. The continuumlimit, achieved by sending the lattice spacing to
zero in a suitable manner, is not instructive here since it introduces troublesome delta functions into the boundary
conditions.
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holds forλ > 1
2 but, as explained in section 3, such values ofλ bear no relevance to actual

systems.
Armed with the solution to thepnm, we can now derive the exponents ofgr for when

λ = 1
2. First consider the isotropic casea = b = 1. Under the projection in figure 3(a) all

the points down the centre of the tail are mapped onto the origin, sogr 6=0 will only start to
receive non-vanishing contributions once the tail has become sufficiently wide. Since the
tail broadens like(n+m)1/2 the firstpnm to contribute togr will lie on the linen+m ∼ r2,
by which point the tail will have already decayed topnm ∼ (n+m)−1 ∼ r−2. Once these
pnm are substituted into the infinite product in (14), the leading-order terms ingr will look
something like

gr ≈ a2

r2
+ a4

r4
+ a6

r6
+ · · · (25)

where theai are constants. Hencegr = O(1/r2), in agreement with the exact solution (6).
The situation is very different in an anisotropic systema 6= b. As can be seen in

figures 3(b) and (c), the tail is no longer vertical but cuts through the projection lines at a
finite angle, passing over allr > 0 (the preferred direction is to the right in both of these
examples). Furthermore, since the gap between successivepnm mapped onto the samer is
finite, and the tail broadens without limit, then for sufficiently larger an arbitrarily large
number ofpnm will contribute to eachgr . Each of thesepnm will be proportional to 1/r,
so the analogous expression to (25) will begr = O(1/r) and power law behaviour with an
exponent of 1 is recovered, in agreement with (9) and numerical simulations. Forr < 0
only exponentially smallpnm contribute andgr<0 takes some exponentially decaying form.

Thus the crossover in behaviour from the anisotropic to the isotropic model in the
M → ∞ limit can be attributed to the difference between a power law tail that moves
across the substrate, and one whose centre is fixed and can only broaden at a much slower
rate. The convergence to the new behaviour can be very slow, especially for weak anisotropy
a ≈ b. Indeed, sincegr ∼ 1/r + O(1/r2) the rate of convergence is itself a power law.
Slow convergence was also observed in the simulations of theM = 1 models is section 2.
However, forM = 1 the spatial correlations were power law in both directions, whereas in
theM →∞ limit the correlationsagainst the direction of anisotropy decay exponentially.
This difference presumably arises because the subavalanches initiated from different active
sites are no longer independent for finiteM.

5. Discussion

It should come as no surprise that the anisotropic Bak–Sneppen model has different critical
exponents to its isotropic equivalent. Universality classes depend upon the dimensionality
and symmetries of the model in question, so the loss of symmetrical interactions should
result in a different class. In spin systems the crossover from Heisenberg to Ising behaviour
occurs around a given temperature, which could be very close to the critical temperature for
weak anisotropies. There is no direct analogue of temperature in the Bak–Sneppen model,
where the critical state is now the attractor of the dynamics, but for weak anisotropies the
convergence to the new exponents is very slow. Nonetheless, we believe that it is the
anisotropic class which should now be regarded as the general case.

The isotropic model could still have applications in any situation where perfect isotropy
can be assumed. The question then becomes, do any such situations exist? In both of
the model’s applications that we are aware of, we think the answer is clearly ‘no’. In the
biological context, asymmetry between co-evolving species could occur for a number of
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reasons. A graphic example for predator–prey relationships is known as the ‘life/dinner’
principle, where the asymmetry arises because the prey has more to lose from a failed
encounter than the predator [10]. This gets its name from an Aesop’s fable, where a dog
gives up chasing a hare because it is only running for its dinner, whereas the hare is running
for its life, hence the ‘life/dinner’ principle†. Such asymmetry should result in a preferred
direction along the food chain, although the issue is somewhat clouded here by the lack of
a realistic food web structure [12, 13]. A second application of the model has recently been
proposed for the process whereby granular materials, such as sand, powder, cornflakes etc,
settle under perturbations [14]. Here, anisotropy would be induced by gravity.

It was mentioned in the introduction that the maximally anisotropica = 0, b = 1 system
should be more open to analysis than the isotropic one. This certainly proved to be true in
theM →∞ limit studied in section 3, where exact solutions were found for all values ofλ

rather than justλ = 1
2, as in the isotropic case. The maximally anisotropic model may also

prove to be more tractable in the originalM = 1 framework. This claim is not unreasonable
and has many precedents. For instance, the Zaitsev model is an extremal dynamical system
with similar rules to the Bak–Sneppen model, except that a random value is subtracted from
the global maximum and redistributed equally to its nearest neighbours. Stipulating that
this value is instead only distributed in one direction gives rise to an anisotropic variant
which can be solved exactly, including explicit expressions for the critical exponents [15].
Another example is provided by the Abelian sandpile model, where a version in which the
sand only topples in one direction was solved before exact results for the isotropic case
were found [16, 17].

One area that we have not investigated is what happens when anisotropy is introduced
to lattices with two or more dimensions. This opens up the possibility of having isotropic
interactions parallel to one axis but anisotropic interactions parallel to another, the number
of permutations between the axes increasing with the dimensionality. Based on the analogy
with spin systems, we would expect that there would still be just two universality classes
for each dimension, one for the fully isotropic case and one for any non-zero anisotropy.
The critical exponents for both classes should converge when the upper-critical dimension
is reached, beyond which the introduction of anisotropy will make no difference. Work is
in progress [18, 19] to find at what dimension this convergence occurs, to help confirm or
deny recent claims that the upper-critical dimension for the Bak–Sneppen model is 8.

Prior to publication we became aware of a modified Bak–Sneppen model by Vendruscolo
et al [20] which introduces a preferred direction by a very different mechanism. Nonetheless
the critical exponents for their model appear to match those found for our one, which
strengthens the case for the universality of the anisotropic class.
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